pysteps.verification.detcatscores.det_cat_fct_compute#
- pysteps.verification.detcatscores.det_cat_fct_compute(contab, scores='')#
Compute simple and skill scores for deterministic categorical (dichotomous) forecasts from a contingency table object.
- Parameters:
contab (dict) – A contingency table object initialized with pysteps.verification.detcatscores.det_cat_fct_init and populated with pysteps.verification.detcatscores.det_cat_fct_accum.
scores ({string, list of strings}, optional) –
The name(s) of the scores. The default, scores=””, will compute all available scores. The available score names a
Name
Description
ACC
accuracy (proportion correct)
BIAS
frequency bias
CSI
critical success index (threat score)
ETS
equitable threat score
F1
the harmonic mean of precision and sensitivity
FA
false alarm rate (prob. of false detection, fall-out, false positive rate)
FAR
false alarm ratio (false discovery rate)
GSS
Gilbert skill score (equitable threat score)
HK
Hanssen-Kuipers discriminant (Pierce skill score)
HSS
Heidke skill score
MCC
Matthews correlation coefficient
POD
probability of detection (hit rate, sensitivity, recall, true positive rate)
SEDI
symmetric extremal dependency index
- Returns:
result – Dictionary containing the verification results.
- Return type:
dict