pysteps.nowcasts.steps.forecast

pysteps.nowcasts.steps.forecast(R, V, n_timesteps, n_ens_members=24, n_cascade_levels=6, R_thr=None, kmperpixel=None, timestep=None, extrap_method='semilagrangian', decomp_method='fft', bandpass_filter_method='gaussian', noise_method='nonparametric', noise_stddev_adj=None, ar_order=2, vel_pert_method='bps', conditional=False, probmatching_method='cdf', mask_method='incremental', callback=None, return_output=True, seed=None, num_workers=1, fft_method='numpy', extrap_kwargs=None, filter_kwargs=None, noise_kwargs=None, vel_pert_kwargs=None, mask_kwargs=None, measure_time=False)

Generate a nowcast ensemble by using the Short-Term Ensemble Prediction System (STEPS) method.

Parameters:
R : array-like

Array of shape (ar_order+1,m,n) containing the input precipitation fields ordered by timestamp from oldest to newest. The time steps between the inputs are assumed to be regular, and the inputs are required to have finite values.

V : array-like

Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite.

n_timesteps : int

Number of time steps to forecast.

n_ens_members : int, optional

The number of ensemble members to generate.

n_cascade_levels : int, optional

The number of cascade levels to use.

R_thr : float, optional

Specifies the threshold value for minimum observable precipitation intensity. Required if mask_method is not None or conditional is True.

kmperpixel : float, optional

Spatial resolution of the input data (kilometers/pixel). Required if vel_pert_method is not None or mask_method is ‘incremental’.

timestep : float, optional

Time step of the motion vectors (minutes). Required if vel_pert_method is not None or mask_method is ‘incremental’.

extrap_method : str, optional

Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface.

decomp_method : {‘fft’}, optional

Name of the cascade decomposition method to use. See the documentation of pysteps.cascade.interface.

bandpass_filter_method : {‘gaussian’, ‘uniform’}, optional

Name of the bandpass filter method to use with the cascade decomposition. See the documentation of pysteps.cascade.interface.

noise_method : {‘parametric’,’nonparametric’,’ssft’,’nested’,None}, optional

Name of the noise generator to use for perturbating the precipitation field. See the documentation of pysteps.noise.interface. If set to None, no noise is generated.

noise_stddev_adj : {‘auto’,’fixed’,None}, optional

Optional adjustment for the standard deviations of the noise fields added to each cascade level. This is done to compensate incorrect std. dev. estimates of casace levels due to presence of no-rain areas. ‘auto’=use the method implemented in pysteps.noise.utils.compute_noise_stddev_adjs. ‘fixed’= use the formula given in [BPS06] (eq. 6), None=disable noise std. dev adjustment.

ar_order : int, optional

The order of the autoregressive model to use. Must be >= 1.

vel_pert_method : {‘bps’,None}, optional

Name of the noise generator to use for perturbing the advection field. See the documentation of pysteps.noise.interface. If set to None, the advection field is not perturbed.

conditional : bool, optional

If set to True, compute the statistics of the precipitation field conditionally by excluding pixels where the values are below the threshold R_thr.

mask_method : {‘obs’,’sprog’,’incremental’,None}, optional

The method to use for masking no precipitation areas in the forecast field. The masked pixels are set to the minimum value of the observations. ‘obs’ = apply R_thr to the most recently observed precipitation intensity field, ‘sprog’ = use the smoothed forecast field from S-PROG, where the AR(p) model has been applied, ‘incremental’ = iteratively buffer the mask with a certain rate (currently it is 1 km/min), None=no masking.

probmatching_method : {‘cdf’,’mean’,None}, optional

Method for matching the statistics of the forecast field with those of the most recently observed one. ‘cdf’=map the forecast CDF to the observed one, ‘mean’=adjust only the conditional mean value of the forecast field in precipitation areas, None=no matching applied. Using ‘mean’ requires that mask_method is not None.

callback : function, optional

Optional function that is called after computation of each time step of the nowcast. The function takes one argument: a three-dimensional array of shape (n_ens_members,h,w), where h and w are the height and width of the input field R, respectively. This can be used, for instance, writing the outputs into files.

return_output : bool, optional

Set to False to disable returning the outputs as numpy arrays. This can save memory if the intermediate results are written to output files using the callback function.

seed : int, optional

Optional seed number for the random generators.

num_workers : int, optional

The number of workers to use for parallel computation. Applicable if dask is enabled or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads.

fft_method : str, optional

A string defining the FFT method to use (see utils.fft.get_method). Defaults to ‘numpy’ for compatibility reasons. If pyFFTW is installed, the recommended method is ‘pyfftw’.

extrap_kwargs : dict, optional

Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation.

filter_kwargs : dict, optional

Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py.

noise_kwargs : dict, optional

Optional dictionary containing keyword arguments for the initializer of the noise generator. See the documentation of pysteps.noise.fftgenerators.

vel_pert_kwargs : dict, optional

Optional dictionary containing keyword arguments ‘p_par’ and ‘p_perp’ for the initializer of the velocity perturbator. The choice of the optimal parameters depends on the domain and the used optical flow method.

Default parameters from [BPS06]: p_par = [10.88, 0.23, -7.68] p_perp = [5.76, 0.31, -2.72]

Parameters fitted to the data (optical flow/domain):

darts/fmi: p_par = [13.71259667, 0.15658963, -16.24368207] p_perp = [8.26550355, 0.17820458, -9.54107834]

darts/mch: p_par = [24.27562298, 0.11297186, -27.30087471] p_perp = [-7.80797846e+01, -3.38641048e-02, 7.56715304e+01]

darts/fmi+mch: p_par = [16.55447057, 0.14160448, -19.24613059] p_perp = [14.75343395, 0.11785398, -16.26151612]

lucaskanade/fmi: p_par = [2.20837526, 0.33887032, -2.48995355] p_perp = [2.21722634, 0.32359621, -2.57402761]

lucaskanade/mch: p_par = [2.56338484, 0.3330941, -2.99714349] p_perp = [1.31204508, 0.3578426, -1.02499891]

lucaskanade/fmi+mch: p_par = [2.31970635, 0.33734287, -2.64972861] p_perp = [1.90769947, 0.33446594, -2.06603662]

vet/fmi: p_par = [0.25337388, 0.67542291, 11.04895538] p_perp = [0.02432118, 0.99613295, 7.40146505]

vet/mch: p_par = [0.5075159, 0.53895212, 7.90331791] p_perp = [0.68025501, 0.41761289, 4.73793581]

vet/fmi+mch: p_par = [0.29495222, 0.62429207, 8.6804131 ] p_perp = [0.23127377, 0.59010281, 5.98180004]

fmi=Finland, mch=Switzerland, fmi+mch=both pooled into the same data set

The above parameters have been fitten by using run_vel_pert_analysis.py and fit_vel_pert_params.py located in the scripts directory.

See pysteps.noise.motion for additional documentation.

mask_kwargs : dict

Optional dictionary containing mask keyword arguments ‘mask_f’ and ‘mask_rim’, the factor defining the the mask increment and the rim size, respectively. The mask increment is defined as mask_f*timestep/kmperpixel.

measure_time : bool

If set to True, measure, print and return the computation time.

Returns:
out : ndarray

If return_output is True, a four-dimensional array of shape (n_ens_members,n_timesteps,m,n) containing a time series of forecast precipitation fields for each ensemble member. Otherwise, a None value is returned. The time series starts from t0+timestep, where timestep is taken from the input precipitation fields R. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds).

References

[See03], [BPS06], [SPN13]