.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/blended_forecast.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_blended_forecast.py: Blended forecast ==================== This tutorial shows how to construct a blended forecast from an ensemble nowcast using the STEPS approach and a Numerical Weather Prediction (NWP) rainfall forecast. The used datasets are from the Bureau of Meteorology, Australia. .. GENERATED FROM PYTHON SOURCE LINES 11-23 .. code-block:: default import os from datetime import datetime import numpy as np from matplotlib import pyplot as plt import pysteps from pysteps import io, rcparams, blending from pysteps.visualization import plot_precip_field .. GENERATED FROM PYTHON SOURCE LINES 24-34 Read the radar images and the NWP forecast ------------------------------------------ First, we import a sequence of 3 images of 10-minute radar composites and the corresponding NWP rainfall forecast that was available at that time. You need the pysteps-data archive downloaded and the pystepsrc file configured with the data_source paths pointing to data folders. Additionally, the pysteps-nwp-importers plugin needs to be installed, see https://github.com/pySTEPS/pysteps-nwp-importers. .. GENERATED FROM PYTHON SOURCE LINES 34-42 .. code-block:: default # Selected case date_radar = datetime.strptime("202010310400", "%Y%m%d%H%M") # The last NWP forecast was issued at 00:00 date_nwp = datetime.strptime("202010310000", "%Y%m%d%H%M") radar_data_source = rcparams.data_sources["bom"] nwp_data_source = rcparams.data_sources["bom_nwp"] .. GENERATED FROM PYTHON SOURCE LINES 43-45 Load the data from the archive ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 45-81 .. code-block:: default root_path = radar_data_source["root_path"] path_fmt = "prcp-c10/66/%Y/%m/%d" fn_pattern = "66_%Y%m%d_%H%M00.prcp-c10" fn_ext = radar_data_source["fn_ext"] importer_name = radar_data_source["importer"] importer_kwargs = radar_data_source["importer_kwargs"] timestep = 10.0 # Find the radar files in the archive fns = io.find_by_date( date_radar, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2 ) # Read the radar composites importer = io.get_method(importer_name, "importer") radar_precip, _, radar_metadata = io.read_timeseries(fns, importer, **importer_kwargs) # Import the NWP data filename = os.path.join( nwp_data_source["root_path"], datetime.strftime(date_nwp, nwp_data_source["path_fmt"]), datetime.strftime(date_nwp, nwp_data_source["fn_pattern"]) + "." + nwp_data_source["fn_ext"], ) nwp_importer = io.get_method("bom_nwp", "importer") nwp_precip, _, nwp_metadata = nwp_importer(filename) # Only keep the NWP forecasts from the last radar observation time (2020-10-31 04:00) # onwards nwp_precip = nwp_precip[24:43, :, :] .. rst-class:: sphx-glr-script-out .. code-block:: none Rainfall values are accumulated. Disaggregating by time step .. GENERATED FROM PYTHON SOURCE LINES 82-84 Pre-processing steps -------------------- .. GENERATED FROM PYTHON SOURCE LINES 84-124 .. code-block:: default # Make sure the units are in mm/h converter = pysteps.utils.get_method("mm/h") radar_precip, radar_metadata = converter(radar_precip, radar_metadata) nwp_precip, nwp_metadata = converter(nwp_precip, nwp_metadata) # Threshold the data radar_precip[radar_precip < 0.1] = 0.0 nwp_precip[nwp_precip < 0.1] = 0.0 # Plot the radar rainfall field and the first time step of the NWP forecast. date_str = datetime.strftime(date_radar, "%Y-%m-%d %H:%M") plt.figure(figsize=(10, 5)) plt.subplot(121) plot_precip_field( radar_precip[-1, :, :], geodata=radar_metadata, title=f"Radar observation at {date_str}", colorscale="STEPS-NL", ) plt.subplot(122) plot_precip_field( nwp_precip[0, :, :], geodata=nwp_metadata, title=f"NWP forecast at {date_str}", colorscale="STEPS-NL", ) plt.tight_layout() plt.show() # transform the data to dB transformer = pysteps.utils.get_method("dB") radar_precip, radar_metadata = transformer(radar_precip, radar_metadata, threshold=0.1) nwp_precip, nwp_metadata = transformer(nwp_precip, nwp_metadata, threshold=0.1) # r_nwp has to be four dimentional (n_models, time, y, x). # If we only use one model: if nwp_precip.ndim == 3: nwp_precip = nwp_precip[None, :] .. image-sg:: /auto_examples/images/sphx_glr_blended_forecast_001.png :alt: Radar observation at 2020-10-31 04:00, NWP forecast at 2020-10-31 04:00 :srcset: /auto_examples/images/sphx_glr_blended_forecast_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 125-132 For the initial time step (t=0), the NWP rainfall forecast is not that different from the observed radar rainfall, but it misses some of the locations and shapes of the observed rainfall fields. Therefore, the NWP rainfall forecast will initially get a low weight in the blending process. Determine the velocity fields ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 132-156 .. code-block:: default oflow_method = pysteps.motion.get_method("lucaskanade") # First for the radar images velocity_radar = oflow_method(radar_precip) # Then for the NWP forecast velocity_nwp = [] # Loop through the models for n_model in range(nwp_precip.shape[0]): # Loop through the timesteps. We need two images to construct a motion # field, so we can start from timestep 1. Timestep 0 will be the same # as timestep 1. _v_nwp_ = [] for t in range(1, nwp_precip.shape[1]): v_nwp_ = oflow_method(nwp_precip[n_model, t - 1 : t + 1, :]) _v_nwp_.append(v_nwp_) v_nwp_ = None # Add the velocity field at time step 1 to time step 0. _v_nwp_ = np.insert(_v_nwp_, 0, _v_nwp_[0], axis=0) velocity_nwp.append(_v_nwp_) velocity_nwp = np.stack(velocity_nwp) .. GENERATED FROM PYTHON SOURCE LINES 157-159 The blended forecast -------------------- .. GENERATED FROM PYTHON SOURCE LINES 159-181 .. code-block:: default precip_forecast = blending.steps.forecast( precip=radar_precip, precip_models=nwp_precip, velocity=velocity_radar, velocity_models=velocity_nwp, timesteps=18, timestep=timestep, issuetime=date_radar, n_ens_members=1, precip_thr=radar_metadata["threshold"], kmperpixel=radar_metadata["xpixelsize"] / 1000.0, noise_stddev_adj="auto", vel_pert_method=None, ) # Transform the data back into mm/h precip_forecast, _ = converter(precip_forecast, radar_metadata) radar_precip, _ = converter(radar_precip, radar_metadata) nwp_precip, _ = converter(nwp_precip, nwp_metadata) .. rst-class:: sphx-glr-script-out .. code-block:: none STEPS blending ============== Inputs ------ forecast issue time: 2020-10-31T04:00:00 input dimensions: 512x512 km/pixel: 0.5 time step: 10.0 minutes NWP and blending inputs ----------------------- number of (NWP) models: 1 blend (NWP) model members: False decompose (NWP) models: yes Methods ------- extrapolation: semilagrangian bandpass filter: gaussian decomposition: fft noise generator: nonparametric noise adjustment: yes velocity perturbator: None blending weights method: bps conditional statistics: no precip. mask method: incremental probability matching: cdf FFT method: numpy domain: spatial Parameters ---------- number of time steps: 18 ensemble size: 1 parallel threads: 1 number of cascade levels: 8 order of the AR(p) model: 2 precip. intensity threshold: -10.0 Computing noise adjustment coefficients... done. noise std. dev. coeffs: [1.11116596 1.39654222 1.01359826 0.91877258 0.76267538 0.60950546 0.52505106 0.4878151 ] ************************************************ * Correlation coefficients for cascade levels: * ************************************************ ----------------------------------------- | Level | Lag-1 | Lag-2 | ----------------------------------------- | 1 | 0.996190 | 0.987414 | ----------------------------------------- | 2 | 0.978659 | 0.927543 | ----------------------------------------- | 3 | 0.905150 | 0.773399 | ----------------------------------------- | 4 | 0.715544 | 0.481070 | ----------------------------------------- | 5 | 0.387409 | 0.139512 | ----------------------------------------- | 6 | 0.181822 | 0.097797 | ----------------------------------------- | 7 | 0.152330 | 0.163940 | ----------------------------------------- | 8 | 0.135901 | 0.152165 | ----------------------------------------- **************************************** * AR(p) parameters for cascade levels: * **************************************** ------------------------------------------------------ | Level | Phi-1 | Phi-2 | Phi-0 | ------------------------------------------------------ | 1 | 1.648780 | -0.655085 | 0.065888 | ------------------------------------------------------ | 2 | 1.623665 | -0.659072 | 0.154547 | ------------------------------------------------------ | 3 | 1.135050 | -0.253991 | 0.411152 | ------------------------------------------------------ | 4 | 0.760900 | -0.063388 | 0.697163 | ------------------------------------------------------ | 5 | 0.392228 | -0.012440 | 0.921837 | ------------------------------------------------------ | 6 | 0.169648 | 0.066952 | 0.981125 | ------------------------------------------------------ | 7 | 0.130382 | 0.144079 | 0.978018 | ------------------------------------------------------ | 8 | 0.117389 | 0.136212 | 0.981489 | ------------------------------------------------------ Starting blended nowcast computation. Computing nowcast for time step 1... done. Computing nowcast for time step 2... done. Computing nowcast for time step 3... done. Computing nowcast for time step 4... done. Computing nowcast for time step 5... done. Computing nowcast for time step 6... done. Computing nowcast for time step 7... done. Computing nowcast for time step 8... done. Computing nowcast for time step 9... done. Computing nowcast for time step 10... done. Computing nowcast for time step 11... done. Computing nowcast for time step 12... done. Computing nowcast for time step 13... done. Computing nowcast for time step 14... done. Computing nowcast for time step 15... done. Computing nowcast for time step 16... done. Computing nowcast for time step 17... done. Computing nowcast for time step 18... done. .. GENERATED FROM PYTHON SOURCE LINES 182-191 Visualize the output ~~~~~~~~~~~~~~~~~~~~ The NWP rainfall forecast has a lower weight than the radar-based extrapolation forecast at the issue time of the forecast (+0 min). Therefore, the first time steps consist mostly of the extrapolation. However, near the end of the forecast (+180 min), the NWP share in the blended forecast has become more important and the forecast starts to resemble the NWP forecast more. .. GENERATED FROM PYTHON SOURCE LINES 191-221 .. code-block:: default fig = plt.figure(figsize=(5, 12)) leadtimes_min = [30, 60, 90, 120, 150, 180] n_leadtimes = len(leadtimes_min) for n, leadtime in enumerate(leadtimes_min): # Nowcast with blending into NWP plt.subplot(n_leadtimes, 2, n * 2 + 1) plot_precip_field( precip_forecast[0, int(leadtime / timestep) - 1, :, :], geodata=radar_metadata, title=f"Nowcast +{leadtime} min", axis="off", colorscale="STEPS-NL", colorbar=False, ) # Raw NWP forecast plt.subplot(n_leadtimes, 2, n * 2 + 2) plot_precip_field( nwp_precip[0, int(leadtime / timestep) - 1, :, :], geodata=nwp_metadata, title=f"NWP +{leadtime} min", axis="off", colorscale="STEPS-NL", colorbar=False, ) .. image-sg:: /auto_examples/images/sphx_glr_blended_forecast_002.png :alt: Nowcast +30 min, NWP +30 min, Nowcast +60 min, NWP +60 min, Nowcast +90 min, NWP +90 min, Nowcast +120 min, NWP +120 min, Nowcast +150 min, NWP +150 min, Nowcast +180 min, NWP +180 min :srcset: /auto_examples/images/sphx_glr_blended_forecast_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 222-237 References ~~~~~~~~~~ Bowler, N. E., and C. E. Pierce, and A. W. Seed. 2004. "STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP." Forecasting Research Technical Report No. 433. Wallingford, UK. Bowler, N. E., and C. E. Pierce, and A. W. Seed. 2006. "STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP." Quarterly Journal of the Royal Meteorological Society 132(16): 2127-2155. https://doi.org/10.1256/qj.04.100 Seed, A. W., and C. E. Pierce, and K. Norman. 2013. "Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme." Water Resources Research 49(10): 6624-664. https://doi.org/10.1002/wrcr.20536 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 34.171 seconds) .. _sphx_glr_download_auto_examples_blended_forecast.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: blended_forecast.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: blended_forecast.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_